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Abstract 

There are events that, when they occur, generate several losses simultaneously, leading an 

insurance company that operates in different lines of business to make multiple payments of 

indemnity. Thus, the premise of independence among risks, typical in the pricing of these events, 

must be constantly questioned. One possibility of dependence modeling among losses is the use of 

copulas, a technique that has been extensively used since the 1990s. However, the empirical 

literature about this is limited, and articles using real-world microdata are even rarer. The purpose 

of this article is to estimate the dependence structure among large losses from a single event that 

generated multiple claims in different lines of business using extreme-value copulas (EVC) 

applying to real-world insurance data and comparing to other families of copulas. The study is 

divided into two parts: (i) adjustment of dependence on simulated data, whose dependence structure 

is known, and (ii) capture of the dependence structure in real-world dataset of 13,734 losses 

belonging to different lines of business, incurred by a single event, whose dependence is unknown. 

Overall, the non-parametric method performed better than the parametric ones, producing more 

consistent estimates. In several real situations, EVC were more adequate to capture the dependence 

among large losses than elliptical or Archimedean copulas, for motor insurance and for large risks. 

Still, there are important differences in the dependence structures when the sum of the losses is 

evaluated, even if each part is not a large loss. Thus, the regulator must be aware of this fact when 

dimensioning the minimum capital requirement. 

Keywords: extreme-value copulas; dependence among lines of business; tail dependence; large 

losses; multiple claims 
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1. Introduction 

 In the History of Brazil's independence process, there was a famous speech attributed to          

D. Pedro I: "Independence or death." However, if D. Pedro I was a risk manager in an insurance 

company, probably the alternative to independence among events wouldn´t be death. At that time, 

a (rudimentary) notion of dependence among events was already present in the Brazilian 

Commercial Code in the year 1850 (Lopes, Peris, Chan, & Borelli, 2015). Three points established 

in that Code highlight this aspect: (i) life insurance for free people was prohibited from being 

offered together with maritime insurance (at the time, slaves were understood as property); (ii) it 

was possible to contract different insurance policies for the same objects, under the same or 

different conditions, and; (iii) it was allowed to contract insurance policies for the ship (hull), its 

freight (transport) and farms (physical property) in the same policy, provided that the value of each 

object was clearly determinedi. In all these points, there was a natural mechanism of dependence 

among risks, policies or lines of business. 

 With that, it is noticed – since that time – a special attention to the occurrence of extreme 

events: events (the so-called ‘sea fortunes’) that have low probability of occurrence and whose 

amount to be indemnified to the insured is a very high value – the severity of the claim is a matter 

of concern in several articles of that Commercial Code. The occurrence of this type of event is very 

harmful to the insurance company to the point of even leading to bankruptcy.  

 To reduce exposure to the bankruptcy risk, the insurance industry has sought to improve its 

pricing models for claims incurred for this type of event. Solvency IIii presents the most recent 

guidelines on insurance risk management, establishing the minimum required capital for insurance 

companies so that there is a 99.5% probability of guaranteeing the operational continuity for the 

next 12 months. Another good reason for this work is the increase in the frequency and severity of 

claims incurred by natural disasters; such phenomena cost billions of dollars to insurance 

companies (Dietz & Walker, 2019; Bokusheva, 2018). 

As an example, a studyiii showed that typhoon Hagibis, which occurred in Japan in 2019, 

generated US$ 15 billion in financial losses, of which US$ 9 billion was insured. For sake of 

comparison, in that same year, the total premiums collected by insurance companies in Brazil were 

around US$ 28 billioniv; that is, if it had occurred in Brazil, this single event would correspond to 

32% of the total premiums collected in the year. Another relevant example is that of the Covid-19 

pandemic, which occurred in 2020: preliminary reportsv showed that this event generated claims 

in several insurance lines (health insurance, life insurance, among others). If the same insurance 

company operates in several lines, an unexpected increase in claims can lead to bankruptcy, 

showing the importance of calculating good measures of dependence among risks in different lines 

of business.  

 When analyzing the occurrence of claims generated by extreme events, it is generally not 

convenient to consider that they are independent (Chukwudum, 2019). Thus, in order to price this 

type of event, two aspects are usually considered: the severity and dependence of the incurred 

claims (Kley, Klüppelberg, & Paterlini, 2020; Sweeting & Fotiou, 2013). There are several ways 

to model the dependence among large losses: simulations, stress testing, use of copulas, among 

others (Shen, 2019). In particular, the use of copulas has become relevant in modeling dependence 

among events in the pricing of claims (Bücher, Irresberger, & Weiss, 2017). In the case of extreme 

events, the use and choice of copula is an important part of this modeling process: several copulas 
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sufficiently satisfactorily capture the dependence among intermediate values, but do not do so for 

extreme values (Furman, Kuznetsov, Su, & Zitikis, 2016).  

Therefore, this article seeks to analyze both the choice of copula and the method of 

estimating parameters that are most appropriate to the dependence among large losses incurred by 

the same generating event. With this, we expect to reduce the scarcity of publications that approach 

this theme empirically, making use of real-world microdata, since much of the related international 

literature discusses theoretical methodologies, however little applied.  

2. Literature review and related studies  

Measuring the dependence among two variables is not exclusive, nor did it originate in 

Actuarial Science: since the end of the 19th century, Sir Francis Galton and Karl Pearson had 

already introduced the concept of correlation between variables, which is very relevant in the study 

of regressions (Frees & Valdez, 1998). For years, the linear correlation coefficient has been used 

as a measure of dependence among variables, being applied, for example, in calculating risks linked 

to asset portfolios, measuring the dependence among the returns of these assets (Szego, 2002). 

 However, from the second half of the twentieth century, some statisticians began to study 

other measures of dependence. In 1951, Maurice Fréchet proposed the following problem: “given 

the marginal distributions of a set of random variables, what can be said about the joint distribution 

of these variables?” (Fréchet, 1951). In 1959, Abe Sklar sent a letter to Fréchet containing some 

results on this problem and, in it, introduced the word copula in the statistical universe, based on 

the linguistic use of this word (term that links the subject of a sentence to the subject complement): 

a function that links a joint distribution of variables to their marginal distributions (Sklar, 1959). 

In the late 1970s and early 1980s, other problems motivated the deepening of the study of 

dependence among variables, such as, for example, the construction of survival tables for joint 

lives, under the hypothesis that individuals’ lifetimes aren’t independent of each other            

(Clayton, 1978). However, it was in the 1990s that the use of copulas was widespread, largely to 

measure dependences among risks incurred in finance and insurance (Embrechts, 2009). 

Also, in this decade, new quantitative risk management methodologies were developed, due 

to the emergence of new products and the implementation of new regulatory guidelines in the 

insurance market. In these methodologies, limitations were already noted in the use of the linear 

correlation coefficient to measure dependencies. Embrechts (2009) cites two of them: cases in 

which a low correlation had extremely dependence in extreme values and a false security generated 

by the linear correlation coefficient, allowing companies to be exposed to risks greater than 

expected. 

At the end of the 1990s, the first applications of copulas in insurance pricing emerged. At 

this time, were also described some copula families and their use as an integral part of risk 

measurement (Frees & Valdez, 1998). Among the copulas described, one that became quite 

relevant was the Gaussian copula, as it was well suited to several sets of variables. However, this 

excessive confidence of managers in modeling risk dependence using only Gaussian copulas 

brought numerous financial setbacks to several companies, allowing other copula families to be 

developed (Embrechts, 2009; Nelsen, 2006). 

Thus, several studies have sought to identify which copula is the most appropriate to 

measure dependencies in risk management. For example, Su & Furman (2017) proposed a method 

of choosing from copulas for multiple risk factors claiming that, in several cases of financial risk 
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management, the choice of copula is based on the ease of its analytical treatment instead of 

observing all the characteristics of the problem in question. 

 In Life insurance, there are many applications with the use of copulas in modeling the 

dependence among mortalities of various populations (Giussani & Bonetti, 2019; Chen, MacMinn, 

& Sun, 2017; Zhu, Tan, & Wang, 2017). According to the authors, there is a need for improvements 

in the modeling of this type of dependence due to reforms of pension systems, creation of new 

types of pension funds and implementation of new products in life insurance. In Non-Life 

insurance, recent applications used copulas to price cybersecurity insurance, measuring the 

dependence among time and speed of infection on a network (Xu & Hua, 2019). Other studies have 

valued the use of copulas especially in cases where the frequency and severity of claims have 

different dependence structure within the same dataset (Hua, 2017). 

From the 2000s, several works began to use copulas to model the dependence among a 

particular type of events: extreme events (Szego, 2002). As these events are located on the tails of 

the distributions, this modeling was known in the literature as tail dependence. Since then, several 

studies have sought to analyze tail dependence measures, such as the upper tail dependence 

parameter (Li, 2018) and the maximum tail dependence index (Sun, Yang, & Zitikis, 2020).  

Strong dependencies on the upper tail of claims severity distributions show that excessive 

financial losses tend to occur jointly, and not independently (Brechmann, Czado, & Paterlini, 

2014). As examples, we can mention: (i) the attack on the World Trade Center, in 2001, which 

generated large financial losses from insurance companies due to underwriting risks and the 

subprime crisis in 2008, in which insurance companies suffered large losses in backed investments 

in collateralized mortgages and debentures (Eling & Toplek, 2009), and; (ii) the dependence among 

extreme events that involved two lines of business in the Nigeria insurance market: auto insurance 

and fire insurance. In this case, this dependence occurred when vehicles carrying flammable 

products collided with other vehicles, causing explosions and multiple accidents            

(Chukwudum, 2019). 

To model dependence on the tails of distribution, there is a copula family called extreme-

value copulas, widely used by rating agencies and regulators, as it reveals major differences in the 

assessment of the insurer's risk of deficit and the ruin probabilities, compared to elliptical copulas 

(Eling & Toplek, 2009; Kelliher et al., 2020). In addition, there are also applications using this 

copula family in modeling dependence among returns from different financial time series and asset 

classes (Bormann & Schienle, 2018; Ruenzi, Ungeheuer, & Weigert, 2020). 

The theoretical framework of extreme-value copulas is still under development from (at 

least) two perspectives: (i) the comparison between these and the Archimedean copulas, and; (ii) 

the study of parametric and non-parametric forms that estimate the dependence function of these 

copulas. Pappadà, Perrone, Durante, & Salvadori (2016) used copulas that are both Archimedean  

and extreme-value copula to compare, based on their dependence functions, which family is the 

most appropriate to measure the dependence among structural risks arising from natural disasters. 

Kamnitui, Genest, Jaworski, & Trutschnig (2019) analyzed different methodologies that estimated 

the dependence function of these copulas, given a certain dependence level. 

In Brazil, there are few studies that mention the use of copulas and, among them, even rarer 

that model tail dependence. Regarding the use of copulas, Melo (2008) used a copula family to 

model the dependence among two insurance lines of business (residential and business), known as 

comprehensive insurance, whose premium calculation is strongly impacted if assumed the 
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hypothesis of independence among that losses. Tanaka & Carvalho (2019) used the elliptical and 

Archimedean copula families to re-estimate the dependence structure among the Brazilian 

insurance lines of business, calculating solvency capital based in copulas, which were compared 

with the results obtained using SUSEP's (Brazilian insurance regulatory agency) methodology, set 

out in Annex III of CNSP Resolution 321/15vi. The results showed that the SUSEP methodology 

measures, in personal insurances, an insufficient level of solvency capital in times of severe crises, 

exposing insurance companies to the risk of bankruptcy. 

Thus, this study will explore two gaps: (i) the use of extreme-value copulas as a possibility 

of choosing the most ranked copula for real-world microdata from an insurance company, and; (ii) 

different methodologies for estimating copula parameters and measures of association. First, these 

gaps will be explored in controlled experiments, with simulated data. Then, we will use real-world 

microdata to verify the conformity of the adjustment in relation to the simulated data. 

3. Methodology 

 Initially, we present general concepts related to copulas. Next, we describe some copulas 

families: elliptical, Archimedean and extreme-value copulas. Finally, we list some measures of 

association and the estimation methods used in this study. All mathematical formulations in this 

section follow closely Nelsen (2006). 

 Let 𝑋 and 𝑌 a pair of random variables, with distribution functions 𝐹𝑋(𝑥) = ℙ[𝑋 ≤ 𝑥] and 

𝐹𝑌(𝑦) = ℙ[𝑌 ≤ 𝑦], respectively, and 𝐹(𝑥, 𝑦) = ℙ[𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦] the joint probability distribution. 

Denoting 𝑢 = 𝐹𝑋(𝑥) and 𝑣 = 𝐹𝑌(𝑦), a copula is a function 𝐶: [0,1]2 → [0,1] with the following 

property 

𝐹(𝑥, 𝑦) = 𝐶(𝑢, 𝑣),      (1) 

that is, 𝐶 is a function that associates the joint distribution of random variables to their distributions. 

This result – known as Sklar´s theorem – is central to the study of copulas. In addition, Sklar 

demonstrated that if 𝐹𝑋 and 𝐹𝑌 are continuous, then 𝐶 is unique. 

 As a corollary follows that, being 𝐹𝑋
−1(𝑢) = sup{𝑥|𝐹𝑋(𝑥) ≤ 𝑢}, then 

𝐶(𝑢, 𝑣) = 𝐹(𝐹𝑋
−1(𝑢), 𝐹𝑌

−1(𝑣)).    (2) 

 In the next subsections, we describe the formulas of some copulas families. 

3.1. Elliptical copulas and Archimedean copulas 

 Elliptical copulas are copulas associated with elliptical distributions, such as Normal and   

t-Student distributions (both symmetrical). The two most relevant of elliptical copulas are Gaussian 

and t-Student, whose formulas are shown in Table 1. 

Table 1 – Bivariate elliptical copulas formula 

Copula Formula 

Gaussian 𝐶𝜃
𝐺𝑎(𝑢, 𝑣) =  Φ𝑅

2 (Φ−1(𝑢), Φ−1(𝑣)) 

t-Student 𝐶𝑛,𝜃
𝑡 (𝑢, 𝑣) = 𝑡𝑛,𝑅

2 (𝑡𝑛
−1(𝑢), 𝑡𝑛

−1(𝑣)) 

Source: own elaboration. 
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 In the Gaussian copula, Φ−1 is the inverse of the standard Normal distribution function,   

Φ2 is the standard Normal distribution for the bivariate case and 𝑅 is the correlation matrix given 

by 𝑟11 = 𝑟22 = 1 and 𝑟12 = 𝑟21 = 𝜃, where 𝜃 is the linear correlation coefficient. In the t-Student 

copula, 𝑡𝑛
−1 is the inverse of the standard t-Student distribution function and 𝑡𝑛

2 is the standard           

t-Student distribution for the bivariate case, both with 𝑛 degrees of freedom. 𝑅 is the same 

correlation matrix defined before. 

 It is relevant to note that neither of these two copulas has an explicit functional form. In 

addition, similarly to the multivariate Normal distribution, the Gaussian copula is symmetrical and 

light tailed, failing to capture the tail dependence. Therefore, it isn´t suitable for dependence 

modeling among losses incurred by extreme events. 

 Archimedean copulas – widely used in actuarial science and finance (Cossette, Marceau, 

Mtalai, & Veilleux, 2018) – allow a wide variety of dependence structures to be modeled, in 

addition to have an explicit functional form. Some Archimedean copulas are listed in Table 2. 

Table 2 – Bivariate Archimedean copulas explicit formula 

Copula Explicit formula 

Clayton 𝐶𝜃(𝑢, 𝑣) = max ([𝑢−𝜃 + 𝑣−𝜃 − 1]
−

1
𝜃, 0) 

Frank 𝐶𝜃(𝑢, 𝑣) = −
1

𝜃
∙ ln (1 +

(𝑒−𝑢𝜃 − 1)(𝑒−𝑣𝜃 − 1)

𝑒−𝜃 − 1
) 

Joe 𝐶𝜃(𝑢, 𝑣) = 1 − [(1 − 𝑢)𝜃 + (1 − 𝑣)𝜃 − (1 − 𝑢)𝜃 ∙ (1 − 𝑣)𝜃]
1
𝜃 

Source: own elaboration. 

3.2. Extreme-value copulas 

 A copula 𝐶∗ is an extreme-value copula if, and only if, there exist a copula 𝐶 such that 

𝐶∗(𝑢, 𝑣) = lim
𝑛→∞

𝐶𝑛 (𝑢
1

𝑛, 𝑣
1

𝑛).     (3) 

 Several authors have presented procedures for obtaining extreme-value copulas. Pickands 

(1981) demonstrated that if 𝐶 is an extreme-value copula, then 𝐶 can be written as 

𝐶(𝑢, 𝑣) = exp {𝑙𝑛(𝑢 ∙ 𝑣) ∙ 𝐴 (
𝑙𝑛(𝑣)

𝑙𝑛(𝑢∙𝑣)
)},   (4) 

for an appropriate choice of the function 𝐴(. ), called dependence function of the extreme-value 

copula 𝐶. This function must be convex and satisfy the following conditions: 

 𝐴(0) = 𝐴(1) = 1; 

 max{𝑡, 1 − 𝑡} ≤ 𝐴(𝑡) ≤ 1; 

 Table 3 presents a list of extreme-value copulas.  
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Table 3 – Extreme-value copulas dependence function and explicit formula 

Copula 𝑨(𝒕) Explicit formula 

Tawn 𝜃𝑡2 − 𝜃𝑡 + 1 𝐶𝜃(𝑢, 𝑣) = 𝑢 ∙ 𝑣 ∙ 𝑒𝑥𝑝 {𝜃 ∙
𝑙𝑛(𝑢) ∙ 𝑙𝑛(𝑣)

𝑙𝑛(𝑢) + 𝑙𝑛(𝑣)
} 

Galambos 1 − (𝑡−𝜃 + (1 − 𝑡)−𝜃)
−

1
𝜃 𝐶𝜃(𝑢, 𝑣) = 𝑢 ∙ 𝑣 ∙ exp {[(− 𝑙𝑜𝑔(𝑢))−𝜃 + (− 𝑙𝑜𝑔(𝑣))−𝜃]

−
1
𝜃} 

Gumbel-

Hougaard (𝑡𝜃 + (1 − 𝑡)𝜃)
1
𝜃 𝐶𝜃(𝑢, 𝑣) = exp {−[(− 𝑙𝑛(𝑢))𝜃 + (− 𝑙𝑛(𝑣))𝜃]

1
𝜃} 

Husler-

Reiss 
𝐴𝐻𝑅(𝑡) 𝐶𝜃(𝑢, 𝑣) = 𝐶𝐻𝑅,𝜃(𝑢, 𝑣) 

Source: own elaboration. 

 For the Husler-Reiss copula: 

                         𝐴𝐻𝑅(𝑡) = 𝑡 ∙ Φ (θ−1 +
𝜃

2
∙ ln (

𝑡

1 − 𝑡
)) + (1 − 𝑡) ∙ Φ (θ−1 −

𝜃

2
∙ ln (

𝑡

1 − 𝑡
)) ,              (5) 

and 

𝐶𝐻𝑅,𝜃(𝑢, 𝑣) = exp {− 𝑙𝑛(𝑢) ∙ Φ (𝜃−1 +
𝜃

2
∙ 𝑙𝑛 (

𝑙𝑛(𝑢)

𝑙𝑛(𝑣)
)) + 𝑙𝑛(𝑣) ∙ Φ (𝜃−1 +

𝜃

2
∙ 𝑙𝑛 (

𝑙𝑛(𝑣)

𝑙𝑛(𝑢)
))} .  (6) 

3.3. Measures of association 

 The linear correlation coefficient has several limitations when measuring dependences 

(Embrechts, 2009). Thus, we present coefficients that seek to overcome such limitations. 

 Before presenting them, it is necessary to introduce the concept of concordance. Two 

distinct pairs (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are concordant if 𝑥1 < 𝑥2 and 𝑦1 < 𝑦2 or if 𝑥1 > 𝑥2 and            

𝑦1 > 𝑦2, that is, if the smallest value of 𝑥 is associated to the smallest value of 𝑦 (or, similarly, the 

largest value of 𝑥 is associated to the largest value of 𝑦). Note that this implication is equivalent to 

write (𝑥1 − 𝑥2)(𝑦1 − 𝑦2) > 0. If (𝑥1 − 𝑥2)(𝑦1 − 𝑦2) < 0, the pairs are discordant. 

 Given this concept, consider two random variables 𝑋 and 𝑌, whose distributions 𝐹𝑋 and 𝐹𝑌 

are continuous, and variables 𝑋′ and 𝑌′, independent copies of 𝑋 and 𝑌, respectively. The sample 

version of Kendall´s 𝜏 is given by 

                          𝜏 = 𝜏𝑋,𝑌 = ℙ[(𝑋 − 𝑋´)(𝑌 − 𝑌´) > 0] − ℙ[(𝑋 − 𝑋´)(𝑌 − 𝑌´) < 0].                  (7) 

 If 𝑋 and 𝑌 are continuous, it is also possible to write 𝜏 as a function of copula 𝐶 associated 

to both 𝑋 and 𝑌: 

                                                         𝜏 = −1 + 4 ∙ ∫ 𝐶(𝑢, 𝑣) 𝑑𝐶(𝑢, 𝑣)
.

[0,1]2 .                                   (8) 

 In addition to this, Spearman´s 𝜌 is defined as 

                 𝜌 = 𝜌𝑋,𝑌 = 𝐶𝑜𝑟(𝐹𝑋(𝑋), 𝐹𝑌(𝑌)) =
𝔼[𝐹𝑋(𝑋) ∙ 𝐹𝑌(𝑌)] − 𝔼[𝐹𝑋(𝑋)] ∙ 𝔼[𝐹𝑌(𝑌)]

√𝕍𝑎𝑟[𝐹𝑋(𝑋)] ∙ 𝕍𝑎𝑟[𝐹𝑌(𝑌)]
.              (9) 
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 If 𝑋 and 𝑌 are continuous, also is possible to write 𝜌 as a function of copula 𝐶 associated 

to 𝑋 and 𝑌: 

                                                       𝜌 = −3 + 12 ∙ ∫ 𝐶(𝑢, 𝑣) 𝑑𝑢𝑑𝑣
.

[0,1]2                                       (10) 

 Table 4 shows the relationship between 𝜏, 𝜌 and the copulas parameters for some of the 

copulas presented. The fields marked with * indicate that, although it is not possible to write this 

relationship analytically, it is possible to estimate these coefficients, as will be detailed in 

subsection 3.4. 

Table 4 – Relationship between 𝜏, 𝜌 and the copulas’ parameters 

Copula 𝝉 𝝆 

Gaussian 𝜏(𝜃) =
2

𝜋
∙ 𝑎𝑟𝑐𝑠𝑒𝑛(𝜃) 𝜌(𝜃) =

6

𝜋
∙ 𝑎𝑟𝑐𝑠𝑒𝑛 (

𝜃

2
) 

Clayton 𝜏(𝜃) =
𝜃

𝜃 + 2
 * 

Frank 𝜏(𝜃) = 1 −
4

𝜃
+

4

𝜃2
∫

𝑡

𝑒𝑡 − 1
𝑑𝑡

𝜃

0

 𝜌(𝜃) = 1 −
12

𝜃3
∫

𝜃𝑡 − 2𝑡2

𝑒𝑡 − 1
𝑑𝑡

𝜃

0

 

Joe 𝜏(𝜃) = 1 +
4

𝜃
∫

ln(1 − 𝑡𝜃) ∙ (1 − 𝑡𝜃)

𝑡𝜃−1
𝑑𝑡

1

0

 * 

Source: own elaboration. 

 For extreme-values copulas, it is possible to write 𝜏 and 𝜌 as a function of dependence 

function 𝐴(. ), using the equations (4), (6) and (8): 

                             𝜏 = ∫
𝑡 ∙ (1 − 𝑡)

𝐴(𝑡)
𝑑𝐴´(𝑡)

1

0

      𝑎𝑛𝑑     𝜌 = −3 + 12 ∙ ∫
1

(1 + 𝐴(𝑡))
2 𝑑𝑡

1

0

.                      (11) 

 According to Li (2018), another important measure of association is the tail dependence 

parameters, used to measure the dependence on the upper and lower tails (that is, when both 

distributions assume very large or very small values). The upper tail dependence parameter 𝜆𝑈 and 

the lower tail dependence parameter 𝜆𝐿 are given by (if the limits exist): 

                                   𝜆𝑈 = lim
𝑘→1−

1−2𝑘+𝐶(𝑘,𝑘)

1−𝑘
           𝑎𝑛𝑑           𝜆𝐿 = lim

𝑘→0+

𝐶(𝑘,𝑘)

𝑘
.                           (12) 

 It is interesting to note that the quantity 𝐶(𝑘, 𝑘) indicates the proportion of information that 

is in the lower left corner of the square [0,1]2, limited superiorly by 𝐹𝑋(𝑥) = 𝑘 and 𝐹𝑌(𝑦) = 𝑘. 

Therefore, if these variables are perfectly correlated, 𝐶(𝑘, 𝑘) = 𝑘 (the maximum value of the 

copula) and, in this case, 𝜆𝑈 = 𝜆𝐿 = 1. As the values of these tail dependence parameters belong 

to the range [0,1], the value 0 indicates complete absence of dependence and the value 1, complete 

dependence. Table 5 shows these parameters for elliptical and Archimedean copulas. 
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Table 5 – Tail dependence parameters for elliptical and Archimedean copulas 

Copula 𝝀𝑳 𝝀𝑼 

Gaussian 0 0 

t-Student 2𝑡𝑛 (−√
(𝑛 + 1)(1 − 𝜌)

1 + 𝜌
) 2𝑡𝑛 (−√

(𝑛 + 1)(1 − 𝜌)

1 + 𝜌
) 

Clayton 0 2 − 2
1
𝜃 

Frank 0 0 

Joe 0 2 − 2
1
𝜃 

Source: own elaboration. 

 Next, we discuss some methods for estimating copula parameters and measures of 

association presented. 

3.4. Estimation methods 

 There are several methods that estimate copula parameters, as well as measures of 

association: some parametric, others non-parametric. In this study, we present three of them: the 

method-of-moments (MME), the method of maximum pseudo-likelihood (MPLE) – both parametric 

– and the Capéraà-Fougères-Genest method (MCFG), a non-parametric way of estimating the 

dependence function 𝐴(. ) for extreme-value copulas. 

 By the MME, the copula parameters are estimated from the inverse of the function 𝜏(. ), 

described in Table 4. To do so, it is necessary estimate 𝜏 initially. Thus, consider two random 

variables 𝑋 and 𝑌 and 𝑛 observed pairs (𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛), with 𝑥𝑖 ∈ 𝑋 and 𝑦𝑖 ∈ 𝑌,        

1 ≤ 𝑖 ≤ 𝑛. The estimator 𝜏̂𝑋,𝑌 is given by 

                 𝜏̂𝑋,𝑌 =
2

𝑛(𝑛 − 1)
∙ ∑ {𝕀[(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) > 0] − 𝕀[(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) < 0]}

1≤𝑖<𝑗≤𝑛

,              (13) 

where 𝕀(𝑡) is the indicator function: 𝕀(𝑡) = 1, if t is true, or 𝕀(𝑡) = 0, otherwise. 

 In the MPLE, from the 𝑛 observed pairs (𝑥1, 𝑦1), (𝑥2, 𝑦2), ... and (𝑥𝑛, 𝑦𝑛) is created a 

sample of pseudo-observations 𝑈𝑖,𝑛 = (
𝑟𝑖𝑋

𝑛+1
,

𝑟𝑖𝑌

𝑛+1
), where 𝑟𝑖𝑋 and 𝑟𝑖𝑌 indicate, respectively, the 

ranking (the position) of 𝑥𝑖 and 𝑦𝑖 in the increasing sequences formed by {𝑥1, 𝑥2, ... , 𝑥𝑛} and     

{𝑦1, 𝑦2, ... , 𝑦𝑛}, to estimate copula parameters using the maximum log-likelihood. This means 

that, for uniparametric copulas, the estimator 𝜃 is the value of 𝜃 that maximizes the function 

                                                                          𝑓(𝜃) = ∑ log[𝑐𝜃(𝑈𝑖,𝑛)]

𝑛

𝑖=1

.                                                               (14) 

 Copulas whose parameters can be estimated via MME can also be estimated via MPLE. 

However, the MPLE is more efficient than the MME, especially in the case of finite samples or 

multiparametric copulas (Hofert, Kojadinovic, Mächler, & Yan, 2018).  
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 Finally, the MCFG estimates the extreme-value copulas parameters from the dependence 

function 𝐴(𝑡) in Table 3. For this, consider the function 

                                                𝜁𝑖,𝑛(𝑡) = min
𝑗∈{𝑋,𝑌}

− log(𝑈𝑖𝑗,𝑛)

𝑡
 , 1 ≤ 𝑖 ≤ 𝑛                                             (15) 

where 𝑈𝑖𝑗,𝑛 is the first (𝑗 = 1) or second (𝑗 = 2) coordinate from 𝑈𝑖,𝑛. The initial estimator 𝐴̂𝐶𝐹𝐺(𝑡) 

was corrected by Gudendorf & Segers (2012), in order to improve its goodness of fit to small 

samples, which is quite frequent in extreme events. The corrected estimator is given by:  

                                                         𝐴´̂𝐶𝐹𝐺(𝑡) = exp [
1

𝑛
∑ (𝜁𝑖,𝑛(1) − 𝜁𝑖,𝑛(𝑡))

𝑛

𝑖=1

]                                                 (16) 

 One way to evaluate the copula model selection by fitting a copula family to a data set is 

the criteria namely the cross-validation copula information criterion (CIC), according to which, 

the higher the CIC, most suitable is the model (Grønneberg & Hjort, 2014). This criterion is 

equivalent (except for a multiplicative constant) to the number given by 

                                                  𝑥𝑣𝑛̂ =
1

𝑛
∙ ∑ log[𝑐𝜃𝑛,−𝑖

(𝐹𝑛,1,−𝑖(𝑥𝑖), 𝐹𝑛,2,−𝑖(𝑦𝑖))]

𝑛

𝑖=1

                              (17) 

where 𝜃𝑛,−𝑖 is the estimator to the copula parameter and 

                                 𝐹𝑛,𝑗,−𝑖(𝑥) = {

1

𝑛
∙ ∑ 𝕀(𝑥𝑘𝑗 ≤ 𝑥)𝑛

𝑘=1,𝑘≠𝑖 , if 𝑥 ≥ min
𝑘∈{1,…,𝑛}−{𝑖}

𝑥𝑘𝑗

1

𝑛
,                                                             otherwise

                  (18) 

4. Results 

4.1. Evaluating the effectiveness of the methods: copula estimation using simulated data 

 When defining a dependence structure, it is not enough to choose only the value of 𝜏̂𝑋,𝑌.         

Figure 1 shows that, for a given value of 𝜏̂𝑋,𝑌 (in the panels in Figure 1, we fixed 𝜏̂𝑋,𝑌 = 0.4), there 

are very different dependence structures, resulting from the copula family used – according to 

Kamnitui et al. (2019). 
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Figure 1 – 10,000 random simulations from each copula family, all of them with 𝜏̂𝑋,𝑌 = 0.4 

 

 

 
Source: own elaboration. 

 In the subtitles, the percentages shown below the copula name represent the frequency of 

pairs in the lower left and upper right rectangles of the joint distribution (regions known as lower 

and upper tail, respectively). These regions are highlighted by the horizontal and vertical dashed 

lines corresponding to the quantile indices of 5% and 95% of each of the marginal’s distributions. 

 Figure 1 shows the symmetry of the lower and upper tails in Gaussian copula; the capture 

of the dependence on the lower tail, by the Clayton copula; and the capture of the dependence on 

the upper tail, by extreme-value and Joe copulas. This reinforces that the choice of copula family 

is the first step in copula dependence modeling, as this choice can substantially affect the 

underlying dependence structure. 

 To evaluate the effectiveness of the methods in adequately capturing the real dependence 

structure, fixed and known dependence structures were imposed from simulated data (before using 

such methods in real-world microdata, in which the dependence structure is typically unknown). 

For this, three scenarios were defined: the first (called ‘weak’) has 10,000 pairs (𝑋, 𝑌) simulated 

from a Gaussian copula with 𝜏̂𝑋,𝑌 = 0.1; the second (‘moderate’) has 10,000 pairs simulated from 

a Joe copula, with 𝜏̂𝑋,𝑌 = 0.4; and the third (‘strong’), has 100 pairs simulated from a Husler-Reiss 

copula, with 𝜏̂𝑋,𝑌 = 0.7. In the three scenarios, were adopted 𝑋~𝐸𝑥𝑝(8500−1) and 

𝑌~𝐸𝑥𝑝(5000−1), due to the fact that Exponencial is often used in severity claim modeling for 

typical insurance lines of business.  
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 Table 6 presents the CIC for the three scenarios based on the copula families presented, 

showing that the best ranked family for these scenarios are, indeed, Gaussian, Joe and Husler-Reiss, 

respectively.  

Table 6 – CIC for copulas families, using MME, in the three scenarios 

Scenario 

G
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ss
 

Weak 118.537 118.535 70.839 109.322 9.217 75.841 51.404 75.254 70.826 

Moderate 2048.75 2168.11 -32.16 1925.08 2953.65 2736.46 2726.26 2714.55 2673.84 

Strong 69.2798 69.9732 26.681 61.8349 67.1129 74.7194 53.6635 75.1437 76.0469 

Source: own elaboration. 

 As much as the model correctly indicated each copula family for all scenarios, one can see 

that, in the ‘weak’ scenario, the CIC values of the Gaussian and t-Student copulas are practically 

the same. However, the t-Student copula for this CIC has 1373 degrees of freedom (high degrees 

of freedom indicate proximity to a Gaussian). In the ‘moderate’ scenario, the negative CIC value 

of the Clayton copula indicates how far this copula is from being the most suitable to capture this 

dependence: Figure 1 showed that the Clayton copula has a large concentration of data in the lower 

left rectangle of the distribution, opposite to Joe copula, who has a large concentration of data in 

the upper right rectangle. 

 Once the copula family has been chosen, it is necessary to estimate its parameter. Table 7 

presents the estimators using the MME and MPLE methods. 

Table 7 – Estimator for the copula parameter in the three scenarios 

Scenario Method 𝜽̂ Standard deviation Log-likelihood 

Weak 
MPLE 0.1539 0.010 119.5354 

MME 0.1547 636.400 119.5323 

Moderate 
MPLE 2.2358 0.031 2,954.5157 

MME 2.2249 - 2,954.3992 

Strong 
MPLE 3.2456 0.472 76.6722 

MME 3.0319 49,373.000 76.3523 
Source: own elaboration. 

  Note that the estimator generated by the MPLE method has a higher log-likelihood and 

lower standard deviation than the one generated by the MME method (it is not possible to calculate 

the standard deviation using the MME for Joe copula), showing that the first estimator is more 

adequate than the second, corroborating the results of previous studies (Hofert et al., 2018).  Figure 

2 shows the joint probability density of 𝑋 and 𝑌, using the Gaussian, Joe and Husler-Reiss copulas, 

with the respective parameters 𝜃𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 0.1539, 𝜃𝐽𝑜𝑒 = 2.2358 and 𝜃𝐻−𝑅𝑒𝑖𝑠𝑠 = 3.2456. 
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Figure 2 – Joint probability density of (𝑋, 𝑌) with Gaussian (left), Joe (center) and  

Husler-Reiss (right) copulas 

  
Source: own elaboration. 

 After successfully capturing the real underlying dependence structure in all three scenarios, 

we analyze the use of MCFG to obtain an estimator 𝐴̂𝐶𝐹𝐺 for the dependence function for extreme-

value copulas. For this, we defined 4 data sets, each with 150 pairs (𝑋, 𝑌) simulated from each of 

the Gumbel-Hougaard, Tawn, Galambos and Husler-Reiss copulas, with 𝜏̂𝑋,𝑌 = 0.7 (except for 

Tawn copula: due to restrictions in Equation (11), we chose 𝜏̂𝑋,𝑌 = 0.4). The Exponential 

distributions of 𝑋 and 𝑌 were the same as in the ‘weak’, ‘moderate’ and ‘strong’ scenarios. Then, 

we constructed graphs to compare the estimator 𝐴̂𝐶𝐹𝐺 and the corresponding dependence function, 

shown in Table 3. 

 The dashed lines in the graphs in Figure 3 represent the restrictions of the dependence 

function A(t): max{𝑡, 1 − 𝑡} ≤ 𝐴(𝑡) ≤ 1. According to Gudendorf & Segers (2012) and Hofert et 

al. (2018), the proximity between the graph and the horizontal dashed line indicates a complete 

absence of dependence between 𝑋 and 𝑌. In contrast, the proximity of the graph with the sloping 

dashed lines indicates complete dependence (comotonicity) among these two variables. 

 

Figure 3 – Comparative graphs between 𝐴̂𝐶𝐹𝐺  and the respective dependence function 
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Source: own elaboration. 

 From Figure 3, we can see that, for the Husler-Reiss, Gumbel-Hougaard and Galambos 

copulas, there is very little difference between the estimator 𝐴̂𝐶𝐹𝐺  and the dependence function 

presented in Table 3. In particular, it is noted that these three copulas captured a high dependence 

on the lower and upper tails (described parametrically by t < 0.2 and t > 0.8, respectively) on the 

joint distribution of (𝑋, 𝑌). This fact agrees with what was evidenced by Brechmann et al. (2014): 

losses resulting from extreme events tend to occur together, and not independently. In addition, the 

Tawn copula is more sensitive to the difference between 𝐴̂𝐶𝐹𝐺  and 𝐴𝑇𝑎𝑤𝑛, with the majority of the 

domain of the joint distribution (that is, for t > 0.4) the estimator 𝐴̂𝐶𝐹𝐺 capturing a higher 

dependence than that captured by the dependence function 𝐴𝑇𝑎𝑤𝑛.   

  Table 8 shows the values of the upper tail dependence parameter, calculated from Table 4 

and Equation (12), considering both the MCFG method and the dependence function (DF) in Table 

3. It is shown that the Husler-Reiss, Gumbel-Hougaard and Galambos copulas capture the high 

dependence on the upper tail (with values close to 0.8) and Tawn copula is more sensitive to the 

difference between these two methods: the relative differences between the values obtained by the 

MCFG and DF are 4.57% (Tawn), 0.53% (Gumbel), 0.43% (Galambos) and 0.31% (Husler-Reiss).  

Table 8 – Upper tail dependence parameter calculated from MCFG and DF methods  

Copula Method 𝝀𝑼 Copula Method 𝝀𝑼 

Husler-Reiss 
MCFG 0.77526 

Tawn 
MCFG 0.48376 

DF 0.77290 DF 0.46260 

Gumbel 
MCFG 0.77307 

Galambos 
MCFG 0.79658 

DF 0.76900 DF 0.79320 
Source: own elaboration. 

 Finally, we verified the sensitivity of the MCFG method, in relation to DF, for datasets with 

different sizes – it is quite common in extreme events modeling to have few data available. Thus, 

the upper tail dependence parameter was calculated for simulated samples with n=100, 50 and 30 

pairs and were calculated the relative variations between the values of the coefficients obtained by 

the MCFG method, in relation to DF. These percentages were organized in Table 9. 

Table 9 – Relative difference between upper tail dependence parameters, by the two methods 

Copula 𝒏 = 𝟏𝟓𝟎 𝒏 = 𝟏𝟎𝟎 𝒏 = 𝟓𝟎 𝒏 = 𝟑𝟎 

Husler-Reiss 0.31% -1.02% -0.12% -0.04% 

Gumbel-Hougaard 0.53% 0.04% -0.35% 0.91% 

Tawn 4.57% -10.49% -3.98% -6.98% 

Galambos 0.43% 0.68% 0.77% 0.28% 
Source: own elaboration. 
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 The results suggest that, the smaller the sample set is, the more MCFG captures, in 

Galambos copula, an increasing dependence than that captured by DF, since the differences are 

always positive and growing (except for n = 30). In Husler-Reiss and Gumbel-Hougaard copulas, 

however, there are small variations between MCFG and DF. This does not happen for Tawn copula, 

which presents diffuse results: sometimes MCFG captures a higher dependence than that captured 

by DF, sometimes lower. 

4.2. Capturing the dependence structure using real-world data 

 The real-world microdata used contain all the insurance policies of an insurance company 

whose claims incurred by a single event generated payments of indemnities in (at least) two 

different insurance lines of business in which the company operates, in the period from Jan/2007 

to May/2012. All monetary values (in Brazilian Real R$ currency) were brought to the constant 

currency of May/2012, to make them comparable. The Brazilian insurance lines of business that 

had claims under these conditions were 0531 (Automobile – Hull), 0553 (Automobile – Optional 

Civil Liability for Vehicles), 0351 (General Civil Liability), 0378 (Professional Civil Liability), 

0118 (Business Comprehensive) and 0520 (Automobile – Passenger Personal Accidents).  

 Representing each simultaneous claim by an ordered pair (𝑥, 𝑦), with 𝑥 and 𝑦 indicating 

the indemnities related to lines of business 𝑋 and 𝑌, respectively, Table 10 presents the descriptive 

statistics of these policies, relative to the total indemnified (𝑥 + 𝑦) generated by these pairs.  

Table 10 – Descriptive statistics of microdata 

Pair of lines 

(𝑿, 𝒀) 

Number of 

Observations 

Mean of  

𝑿 + 𝒀 (R$) 

Median of 

𝑿 + 𝒀 (R$) 

St. deviation 

of 𝑿 + 𝒀 (R$) 

Maximum of 

𝑿 + 𝒀 (R$) 
(0531,0553) 13676 13,297.03 7,440.30 25,987.45 1,131,667.96 

(0351,0378) 25 50,958.47 41,968.50 49,888.17 165,004.24 

(0118,0351) 17 108,390.74 15,231.74 293,507.80 1,230,452.83 

(0520,0531) 16 48,384.23 38,738.98 35,489.41 128,636.08 
Source: own elaboration. 

 The large number of observations of the pair (0531,0553) is justified by the characteristics 

of the policies that cover these lines jointly: it is a massified, standardized compound insurance 

with a long history. In addition, it is noted that, in the four types of pairs of lines listed in Table 10, 

the mean of the total indemnities per policy is greater than the median. This, together with the high 

standard deviations, high maximum indemnity amount (per policy) and low number of 

observations in 3 of the 4 pairs, evidence the presence of extreme events in this company’s 

portfolio. It is relevant to note that in pair (0531,0553) the maximum amount indemnified per 

policy is higher than 85 times the mean of the payment indemnities (per policy) for the period. In 

the pair (0118,0351), the maximum amount indemnified per policy is higher than 11 times the 

mean of the payment indemnities (per policy) for the period. 

 From these pairs, we analyzed 10 scenarios. The first 7 being relative to the pair 

(0531,0553), considering: 1) all data of this pair; 2) data related to the 90% quantile index in each 

of lines 0531 and 0553; 3) same as previous one, with a 95% quantile index; 4) same as          

scenario 2, with a 99.5% quantile index; 5) data related to the 90% quantile index in the sum of 

lines 0531 and 0553; 6) same as previous one, with a 95% quantile index; and 7) same as        

scenario 5, with a 99.5% quantile index. 
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The other scenarios are: 8) all data in the pair (0351,0378); 9) all data in the pair 

(0118,0351); and 10) all data from the pair (0520,0531). According to Sweeting & Fotiou (2013) 

and Sun et al. (2020), an extreme event can generate multiple claims that are not as severe as in an 

isolated line of business. However, as the insurance company pays the total amount claimed, when 

adding the indemnity from another line originating from the same event, it may occur that the total 

amount indemnified exceeds a certain limit, justifying the construction of scenarios 5 to 7, which 

can generate results quite different from scenarios 2 to 4. Table 11 shows the best ranked copula 

family (according to the CIC) and the estimated parameter (using the MPLE) for these scenarios.  

Table 11 – Best ranked copula family and estimated parameter, in each of the scenarios  

Scenario Copula 𝜽̂ Scenario Copula 𝜽̂ 

1 Gumbel 1.23595±0.008 6 Frank -2.64214±0.217 

2 Husler-Reiss 0.87226±0.067 7 t-Student -0.37102±0.130 

3 Gaussian 0.29163±0.068 8 Galambos 0.75320±0.339 

4 Tawn 0.88252±0.313 9 Joe 1.84144±0.795 

5 t-Student -0.39272±0.024 10 Joe 1.07774±0.398 
Source: own elaboration. 

 The scenarios in which all data from the pair were used (scenarios 1, 8, 9 and 10) had their 

dependences captured by extreme-value or Joe copulas – precisely those that, by Figure 1, capture 

the high dependence on the upper tail. The joint probability densities for the copulas of these four 

scenarios (Figure 4) show that if an insurance company wishes to offer policies with multiple 

coverages, it cannot ignore the fact that large losses occur jointly: there is invariably high density 

in the high quantiles of both lines. 

Figure 4 – Joint probability density, for each of the 4 pairs 

       

 
Source: own elaboration. 

 After restricting the pair (0531,0553) to 90%, 95% and 99.5% quantiles, extreme-value 

copulas adequately captured the dependence in two scenarios: 2 (90% of each line) and 4 (99.5% 

of each line). However, when considering the same quantiles, for the sum of the losses (scenarios 

5 and 7, respectively), the best ranked copula family was the t-Student, with 4.82 degrees of 

freedom – in both scenarios.  

Figure 5 shows the joint probability densities corresponding to these four scenarios. Note 

that extreme-value copulas are better for capturing dependence in cases which only events that 

generate large losses in both lines, but do not do so in cases which an event generates a high 

indemnity in one of the lines of business, but not on the other. When these cases are also included, 
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the dependence structure is modified in order to capture this dependence as well. In scenarios 2 

and 4, extreme-value copulas were replaced by a t-Student copula. 

Figure 5 – Comparison between joint probability densities, by scenario        

 

       
                                                                                                                                                                               Source: own elaboration. 

 In order to highlight the argument of the previous paragraph, the quantile of 99.5% in line 

0531 corresponds to R$137,725.95. The same quantile in line 0553 corresponds to R$55,449.86 

and, considering the sum of the losses, this quantile corresponds to R$145,728.54. One of the 

policies generated claims whose indemnity were R$485,518.77 and R$19,401.52 in these 

respective lines of business, totaling R$504,920.29 to be indemnified by the insurance company, 

resulting from a single event. As the amount in line 0553 is less than R$55,449.86, then this policy 

is not included in scenario 4, but is included in scenario 7, illustrating the difference between the 

dependence structures in scenarios 2 and 4, in relation to 5 and 7. 

 Table 12 shows the upper tail dependence parameters for each of the 10 scenarios. The 

highest value of upper tail dependence parameter occurred in the pair (0118,0351), showing that, 

in comprehensive business insurance, extreme events tend to severely affect not only the company 

itself, but also third parties. 

Table 12 – Upper tail dependence parameter, for each scenario  

Scenario 1 (DF) 1 (MCFG) 2 (DF) 2 (MCFG) 3 4 (DF) 4 (MCFG) 

𝝀𝑼 0.24789 0.24491 0.25161 0.24163 0 0.44126 0.46916 

Scenario 5 6 7 8 (DF) 8 (MCFG) 9 10 

𝝀𝑼 0.01127 0 0.01250 0.39841 0.39184 0.54295 0.09754 
Source: own elaboration. 

The pairs (0531,0553) and (0351,0378) showed little difference between the DF and MCFG 

method. In addition, if the insurance company considers only the values of 𝜆𝑈 of the scenarios in 

which the sum of the losses is considered to dimension its solvency capital (and not each line of 

business individually), it may be exposed to the risk of insolvency if it occurs an extreme event. 

This argument is evidenced by calculating the variation between the upper tail dependence 

parameters by comparing the scenarios in which each line is considered individually and its 

respective scenario, considering the sum of the losses: in scenario 2 (DF), the parameter obtained 

was 2133% higher than that obtained in scenario 5 and, in scenario 4 (MCFG), the parameter 

obtained was 3655% higher than that obtained in scenario 7. These high variations strongly reflect 
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the increase in the level of exposure to the insolvency risk of this insurance company, due to some 

extreme event.  

Analyzing the sensitivity of the MCFG method and DF, it is noted that, in scenario 4, the 

MCFG method indicated an even higher dependence on the upper tail than that indicated by the 

DF. Both graphs in Figure 6 compare the two methods, with the graph on the right using, for this, 

the dependence level (where 0 indicates independence and 1, complete dependence). In addition to 

the high dependence across the domain, note that, for t > 0.4, the MCFG method captures a higher 

dependence than the DF. 

Figure 6 – Comparison between 𝐴̂𝐶𝐹𝐺 estimator and the dependence function of Tawn copula 

 
Source: own elaboration. 

5. Conclusion 

 There are events that, when they occur, generate several losses simultaneously, in different 

insurance lines of business. For insurance companies that operates in different lines – and, 

therefore, make multiple payments of indemnity – it is not recommended to assume that these 

claims are independent. If the event occurred is an extreme event, whose claims have high severity, 

an unexpected increase in the indemnified amounts may even lead the insurance company to 

bankruptcy.  

 One of the ways to capture the dependence structure among large losses is through copulas. 

The choice of copula and the method of estimating the parameters is an essential part of capturing 

this dependence (Su & Furman, 2017). Thus, this article aimed to analyze the choice of copula 

among the elliptical, Archimedean and extreme-value (EVC) families of copulas, using different 

methods of estimation (MME, MPLE and MCFG) of the parameters. Once defined as capturing 

the dependence structure, we estimated the upper tail dependence using real-world microdata from 

an insurance company. 

 As a result, the MPLE proved to be more appropriate than the MME method and, in several 

cases for EVC, the MCFG method captured the upper tail dependence better than the FG. In relation 

to microdata, EVC proved to be more adequate to capture the dependence among large losses in 

different scenarios, in relation to the other copulas. The dependence among incurred claims in 

different lines of business corroborates the fact that SUSEP groups different lines in the so-called 

‘business classes’. In CNSP Resolution nº360/17, SUSEP predicts and quantifies the dependence 

that exists among business classes in calculating the minimum capital required for the insurance 

company’s solvency, but does not do so for lines of the same class of business. The results of this 

study showed that this dependence exists and is relevant for the calculation of risk capital, 

especially for insurance companies that operate in different lines belonging to the same class of 
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business, which may be exposed to greater risks than they believe they are. Still, the dependence 

on the upper tail obtained by the pair (0118,0351) – the only one in this study whose lines belong 

to different classes – is 35.7% higher than that calculated by SUSEP, indicating that the insurance 

company’s solvency capital does not correctly predict extremes events, which is dangerous. 

 In future work, we suggest further applications to other sets of microdata or data referring 

to other insurance lines of business, such as personal insurance, in which it may be interesting to 

capture the dependence among the Personal Accidents, Serious Illnesses or Loss of Income lines. 

Another suggestion is to use a mixture copulas or empirical copulas to capture different 

dependence structures within the same data set.  
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